STUDIES OF NITROGEN-PHOSPHORUS COMPOUNDS. XXVII¹⁾
THE HYDROLYSIS OF TETRAMERIC PHOSPHORUS NITRIDE DIAMIDE

Etsuro KOBAYASHI

National Chemical Laboratory for Industry
Hon-machi, Shibuya-ku, Tokyo 151

When an aqueous solution of $N_4P_4(NH_2)_8$ was refluxed at 100°C, the compound was initially hydrolyzed to $PO(NH_2)_3$ and $P_2O_2NH(NH_2)_4$, and they were converted into $PO(ONa)(NH_2)_2$. The rate of hydrolysis was remarkably slow at room temperature, however, the composition of the hydrolysis products was similar to that at 100°C. In a sosium hydroxide solution, $N_4P_4(NH_2)_8$ was converted directly into $PO(ONa)(NH_2)_2$ at an elevated temperature. An acid-hydrolysis behavior was resembled that in the neutral-hydrolysis, but the reaction was accelerated with an acid strength. The formation of tetrametaphosphimate by the hydrolysis of $N_4P_4(NH_2)_8$, that had been hitherto claimed, could not be recognized in this study.

The amidated derivatives of the lower polymers of phosphorus nitride dichloride have an interest as the fireproof material 2,3 and fertilizer. 4,5 The present author had previously reported the synthesis of $N_3P_3(NH_2)_6^{6}$ and the formation of PO(ONa)(NH₂)₂ by the alkali-hydrolysis of the trimeric variety. The this work, the hydrolysis of $N_4P_4(NH_2)_8$ in the neutral, alkali and acid solutions was investigated. The experimental results were partially different from the previous explanations. 8,9 And so the hydrolysis behavior of $N_4P_4(NH_2)_8$ will be described as compared with that of $(NPCl_2)_4$.

 $(\mathrm{NPCl}_2)_4$ (mp. 123.0-123.7°C) used as the raw material was obtained by the fractional sublimation under a vacuum from $(\mathrm{NPCl}_2)_n$ (n=3-7) which was synthesized by the reaction between phosphorus pentachloride and ammonium chloride. After $(\mathrm{NPCl}_2)_4$ was fully treated with liquid ammonia in the presence of a little amount of dioxane. The resulting product was dissolved in water, and the addition of ethanol into the solution gave rise to the precipitate of $\mathrm{N_4P_4}(\mathrm{NH_2})_8\cdot\mathrm{H_2O}$, which was separated from the

mother liquor, fianlly vacuum-dried, and used for the hydrolysis examinations.

The elution chromatograms of a mixture of the standard materials and some hydrolysis products are shown in Fig. 1.

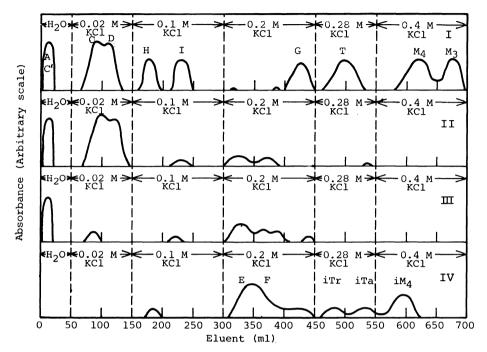


Fig.1 Chromatographic analysis of hydrolysis products of N4P4 (NH2)8 and (NPCl2)4 at room temperature.

I: Mixture of standard materials [A: $N_4P_4(NH_2)_8$, C: $P_2O_2(NH)(NH_2)_4$, C': PO(NH₂)₃, D: PO(ONa)(NH₂)₂, H: PO(ONa)₂NH₂, I: Na₂HPO₄, G: Na₄P₂O₇, T: Na₅P₃O₁₀, M₃: (NaPO₃)₃, M₄: (NaPO₃)₄]

II: Hydrolysis product of $N_4P_4(NH_2)_8$ for 20 day

 ${\rm III}$: Hydrolysis product of ${\rm (NPCl}_2)_4$ in ether-aqueous ammonia solution for 1 hr

IV: Hydrolysis product of $(NPCl_2)_4$ in ether-water solution for 2 hr Estimated components [E: $P_2O_2(NH)(NH_2)_2(OH)_2$, F: $P_2O_2(NH)(OH)_4$, iTr: $P_3O_3(NH)_2(OH)_5$, iTa: $P_4O_4(NH)_3(OH)_6$, iM₄: $P_4N_4O_4H_4(OH)_4$]

The neutral-hydrolysis of N_4P_4 (NH₂)₈ were examined at the room and elevated temperatures, and the hydrolysis products were analyzed by means of the ion-exchange chromatography. When a solution of 0.05 M N_4P_4 (NH₂)₈ was refluxed at 100°C, the compound was initially hydrolyzed into PO(NH₂)₃ and $P_2O_2NH(NH_2)_4$. Further, they converted to PO(ONH₄) (NH₂)₂ as a main product in this case, and a part of the diamidophosphate gradually decomposed to monamidophosphate. In an aqueous solution, N_4P_4 (NH₂)₈ was stable for about 3 days at room temperature, after that was gradually hydrolyzed. Chromatogram II shows an elution curve for the hydrolysis product of N_4P_4 (NH₂)₈ after 20 days. The rate of hydrolysis was remarkably slow, the composition

of the hydrolysis products was similar to that at 100°C . Chromatogram III shows the elution for the hydrolysis product of $(\text{NPCl}_2)_4$ (0.5 g) in an ether (7.5 ml)-aqueous ammonia (3 M, 8 ml) solution. $(\text{NPCl}_2)_4$ was partly converted into $\text{N}_4\text{P}_4(\text{NH}_2)_8$ in spite of the presence of water. The other products were some phosphoryl triamide, tetramidoimidodiphosphate, orthophosphate and imidodiphosphate. $(\text{NPCl}_2)_4$ (0.5 g) was also hydrolyzed in an ether (15 ml)-water (5 ml) solution. The product was neutralized by employing aqueous ammonia, and analyzed by means of the ion-exchange chromatography. The result is shown as chromatogram IV. In this hydrolysis, $(\text{NPCl}_2)_4$ converted into a cyclic tetrametaphosphimate, simultaneously, it was gradually hydrolyzed into imidotetraphosphate, imidotriphosphate, imidodiphosphate, and some amidophosphate.

Moureu etc. $^{8)}$ had observed by a microscopic examination that the hydrolysis product of N_4P_4 (NH₂)₈ resembled closely to $P_4N_4O_4H_4$ (ONH₄)₄·4H₂O which¹⁰) was obtained by the hydrolysis of (NPCl₂)₄. And then it was concluded that the hydrolysis product of N_4P_4 (NH₂)₈ was the same compound to $P_4N_4O_6H_6$ (ONH₄)₂. However, the components had not been examined by other analytical technics. Their result was referred in a science book. 11) To ascertain whether their result is true, present author have also investigated the hydrolysis behaviors of (NPCl₂)₄ and N_4P_4 (NH₂)₈. As the abovementioned results, the cyclic tetrametaphosphimate was obviously formed by the hydrolysis of (NPCl₂)₄, but, the formation of tetrametaphosphimate by the hydrolysis of N_4P_4 (NH₂)₈ could not be recognized in this work.

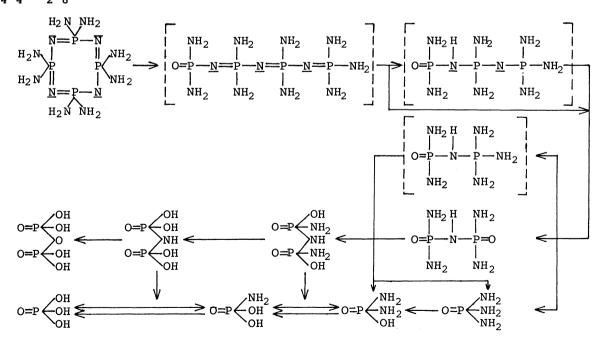


Fig.2 Hydrolysis of $N_4P_4(NH_2)_8$ in neutral or acid solution.

On the alkali-hydrolysis, in a sodium hydroxide solution N_4P_4 (NH₂)₈ was converted directly into PO(ONa)(NH₂)₂ without any intermediate products by refluxing for 3 hr at about 100°C. The rate of the alkaline-hydrolysis obeyed that of a first-order equation, the rate constants being 1.0×10^{-3} , 2.5×10^{-3} , 1.9×10^{-2} and 4.2×10^{-2} at 50, 60, 80 and 90°C, respectively. These values were about 2.7 times that of the alkalihydrolysis of N_3P_3 (NH₂)₆, and the activation energy of the reaction was 20.8 Kcal/mol.

It was observed by the examinations that the acid-hydrolysis behavior was resembled that in the neutral-hydrolysis. A process of the neutral and acid-hydrolysis is shown in Fig. 2. The reaction was accelerated with an acid strength, the existences of $PO(NH_2)_3$ and $P_2O_2NH(NH_2)_4$ which were unstable in an acid solution could not be recognized. In this case, $N_4P_4(NH_2)_8$ was hydrolyzed up to the formation of orthophosphates and diphosphates.

Reference

- Part XXVI of this series: E.Kobayashi and S.Kamagami, Nippon Kagaku Kaishi, 1975, 2098.
- 2) C.A.Redfarm and H.Coates (Albright & Wilson Ltd.), Brit., 788,785 (1958).
- 3) Erik R.Nielsen and William L.Stepp, U.S., 3,348,926 (1967).
- 4) T.Z.Wakefield, E.S.Allen, F.J.McCullough, C.R.Sheridan, and J.J.Kohlen, J. Agr. Food Chem., 19, 99 (1971).
- W.Wanek, L.Ondracek, and J.Hampl, Z. Pflanzenernaehr. Bodenk., <u>128</u>, (3), 169
 (1971); Agrochimia, 11, (6), 177 (1971).
- 6) E.Kobayashi, Nippon Kagaku Kaishi, <u>1972</u>, 38; Journal of The National Chemical Laboratory for Industry, <u>68</u>, 19 (1973).
- 7) E.Kobayashi, Nippon Kagaku Kaishi, <u>1973</u>, 1437; Journal of The National Chemical Laboratory for Industry, 69, 470 (1974).
- 8) H.Moureu and P.Rocquet, Bull. Soc. Chim., [V] 829 (1936).
- 9) K.Dostal, M.Kouril, and J.Novak, Z. Chem., <u>4</u> (9), (1964); Chem. Abstr., <u>62</u>, 4670 (1965).
- 10) H.N.Stokes, Amer. Chem. Journal, 18, 780 (1896).
- 11) Charles B.Colburn, "Developments in Inorganic Nitrogen Chemistry I" Elsevier,
 Amsterdam (1966), p356.

(Received February 6, 1976)